

FSI Open API

All brands and product names are trademarks or registered trademarks of the

respective producers. FSI Viewer, FSI Server and NeptuneLabs are registered

trademarks of NeptuneLabs GmbH, Germany.

Developed by:

NeptuneLabs GmbH

Lagesche Str. 32

D-32657 Lemgo

Germany

© 2009-2017 NeptuneLabs. All rights reserved.

Table of Contents

1 Introduction..6

2 Retrieving Data from the Server..7

2.1 Request Types ... 7

2.2 Image Requests... 7

2.2.1 Default Image Renderer ...8

2.2.2 Double Page Image Renderer ...9

2.2.3 Anaglyph Image Renderer ..11

2.3 Template System .. 13

2.4 Info Requests .. 14

2.4.1 Default Info Renderer ...15

2.5 List Requests ... 18

2.5.1 Default List Renderer..18

2.6 Search Requests ... 20

3 Modifying Data ..21

3.1 Interface Overview.. 21

3.2 Authentication .. 22

3.3 Managing directories ... 23

3.3.1 Creating directories ..23

3.3.2 Deleting directories...23

3.3.3 Renaming directories ..24

3.3.4 Re-importing directories..24

Table of Contents

3.4 Managing files .. 24

3.4.1 Uploading files...24

3.4.2 Downloading files...26

3.4.3 Deleting files..26

3.4.4 Renaming / moving files ..27

3.4.5 Re-importing images..27

3.5 Managing trash .. 27

3.6 Download and Batch Processing .. 27

3.7 Preferences.. 29

3.8 Changing the password... 29

3.9 Messages used in Management Requests ... 29

3.9.1 Action Response ..30

3.9.2 SaltResponse ...31

3.9.3 LoginResponse..32

3.9.4 SessionRefreshResponse ..33

3.9.5 PrefsResponse...34

3.9.6 UploadStatusResponse ...35

3.9.7 BooleanResponse Message ..36

3.9.8 Image Message ..37

3.9.9 Directory Message...38

3.9.10 Password Message ...40

3.10 Example Code .. 41

Table of Contents

4 Appendix ..44

4.1 Links to resources ... 44

4.2 Changes in the OpenAPI.. 44

Introduction |

NeptuneLabs - Open API 6

1 Introduction

This document provides an insight in how to use the FSI Server from a developers point

of view. Whereas the manual describes the setup, administration and every day usage of

the FSI Server, this guide is directed to developers integrating FSI Server in complex

environments or designing client applications. The FSI Server offers an extensive API

providing access to the full functionality of the server.

This document refers to FSI Server 2016 or above, although most parts also apply to

previous versions. For maintainers of third party applications using the FSI Server

OpenAPI will find the changes to previous versions explicitly listed in Appendix B.

The API can be considered to be split into two main parts. The first part is the servers

core task: image and meta data delivery in real time. FSI Server is highly configurable to

deliver the content needed in the correct format needed. The second part of the API is a

REST-like interface to manage the data on the server. It allows basic operations like

uploading and deleting items from the server. All parts of the API use the standardized

Hypertext Transfer Protocol (HTTP) allowing applications to be developed in every

modern programming language.

Retrieving Data from the Server | Request Types

7 NeptuneLabs - Open API

2 Retrieving Data from the Server

The FSI Servers primary task is to provide quick access to images, image ranges and image

meta data, mainly for web usage.

The available output formats for images are therefore limited to what modern browsers

can display.

The output format for meta data can be modified to match the developers needs by

providing templates.

2.1 Request Types

All HTTP requests to this part of the server API are GET or POST requests. Every

request must contain a mandatory parameter named type which specifies the expected

return value. Currently available types are image, info, list, search and appinfo.

The appinfo type is only meant for usage by NeptuneLabs Client applications like FSI

Viewer.

The other types are discussed in detail in the following sections. Image, info and list

requests are always directed at a certain renderer which defines the internal methods

used to handle the request. Renderers are defined by XML files in a directory called

renderers in the FSI Servers main config directory. More detailed information on

renderers can be found in the FSI Server manual Renderers section.

2.2 Image Requests

In general, image requests are GET requests and are identified by the value image for the

parameter type. Except for error cases, responses to image requests will always contain

image data. The resulting image format depends on the renderer addressed. The renderer

also defines the specific image-renderer used and the optionally applied image effects.

The image request is evaluated and depending on the renderer settings, the request is

passed on to the image-renderer which assembles the image from the data stored in the

internal storage or the multiresolution files. If any effects are specified in the renderer or

in the request parameters they will then be applied before the image is finally converted

and compressed to the format defined in the renderer. A typical image request therefore

has the following parameters:

https://doc-admin.neptunelabs.com/display/FS/Renderers
https://doc-admin.neptunelabs.com/display/FS/Renderers
https://doc-admin.neptunelabs.com/display/FS/Renderers
https://doc-admin.neptunelabs.com/display/FS/Renderers
https://doc-admin.neptunelabs.com/display/FS/Renderers

Retrieving Data from the Server | Image Requests

NeptuneLabs - Open API 8

Parameter Description Default

Type Mandatory parameter

specifying the request type

-

Renderer Specifies the renderer to be

used.

Defined in server configuration

Source Mandatory, specifies the image

requested

-

Effects Optional effects to apply to the

resulting image

-

Quality Optional parameter used to

define the compression quality

when requesting a jpg image

Defined in the renderer

Depending on the image-renderer used there can be more mandatory or optional

parameters.

2.2.1 Default Image Renderer

The default image-renderer is used if no other image-renderer is specified in the

addressed renderer. The default image-renderer is the first choice in most scenarios like

(3D-)product presentation or page rendering for FSI Pages. It allows requesting complete

images as well as image ranges, scaling the images to the requested size. Depending on the

configuration it will keep the source images aspect ratio or distort the image to exactly fit

the requested size. The default image-renderer is configured by setting the following

configuration options in the imagerenderer section of the renderer definition.

Retrieving Data from the Server | Image Requests

9 NeptuneLabs - Open API

Option Description Default

keepAspectRat
io

Defines if the original aspect ratio is

preserved or if the image(-region) will

be distorted to exactly match match the

requested size

true

maxWidth,
maxHeight

Defines the Maximum size of images

that can be requested through this

renderer

Height: 3000 pixel

Width: 3000 pixel

defaultWidth,
defaultHeight

Default image dimensions used when

none are given in the URL
Height: 300 pixel

Width: 300 pixel

The default image-renderer allows using the following additional parameters in requests:

Parameter Description Default

width &
height

Both optional, these parameters specify

the size of the image requested.

Defined in the

profile.

left, top,
right, bottom

Optional parameters with values ranging

from 0 to 1. Used to request an image

region.

left=0, top=0,

right=1,

bottom=1

rect Four comma-separated values ranging

from 0 to 1 which can be used instead

of left, to, right and bottom.

0,0,1,1

2.2.2 Double Page Image Renderer

The double page image-renderer composes two images to one image by placing them

next to each other. As the name suggests, this is primarily designed for displaying two

adjacent pages of a catalog or brochure. The first client side FSI application to make use of

this is FSI Pages mobile which uses this image-renderer to display the catalog overviews.

The Double Page Image Renderer does currently not support image ranges, so using this

renderer to zoom into images using FSI Viewer is not possible.

Retrieving Data from the Server | Image Requests

NeptuneLabs - Open API 10

The image-renderer configuration section in the renderer definition allows setting the

following parameters:

Option Description Default

maxWidth,
maxHeight

Defines the maximum size of images

that can be requested through this

renderer

Height: 3000 pixel

Width: 3000 pixel

defaultWidth,
defaultHeight

Defines the default dimensions to use, if

none are provided in the request.
Height: 300 pixel

Width: 300 pixel

backgroundCol
or

Defines the background color, which is

visible as soon as one of the images has

transparent regions or if the two images

have different aspect ratios.

FFFFFF

defaultAlignm
ent

Defines how to align image on a page, if

they do not fill out the complete page.

CC

This image-renderer supports a number of query parameters, some mandatory, others

optional.

Query

Parameter

Description Type Default

source Needs to provide two comma

separated image urls. The first

one for the left and the second

for the right page.

mandatory -

Retrieving Data from the Server | Image Requests

11 NeptuneLabs - Open API

Query

Parameter

Description Type Default

width &
height

The requested image

dimensions.

optional see

defaultWidth

and

defaultHeight

options

above

leftalignm
ent,
rightalign
ment

Defines how to align the image

on the left/right page.

optional see default

Alignment

above

leftimagec
rop,
rightimage
crop

Defines a range to which the

image is cropped before placing

it on the left/right page. (four

comma-separated floating point

values specifying the top-left

corner and the width and

height)

optional 0, 0, 1, 1

leftinnerg
ap,
rightinner
gap

Defines an inner gap between

the center of the resulting

double-page and the image

edges (floating point value

between 0 and 1 specifying the

gap size in relation to the

image size).

optional 0

2.2.3 Anaglyph Image Renderer

The Anaglyph Image-Renderer provides the basic functionality for using FSI Server to

generate stereoscopic 3D images. It composes an anaglyph image from two given source

images, allowing to specify the type of 3D glasses used to view the image by providing the

color filters for the left and right image. An additional parameter allows applying effects to

the image prior to performing the necessary color and compose operations.

Retrieving Data from the Server | Image Requests

NeptuneLabs - Open API 12

The image-renderer supports the following configuration parameters in the renderer

declaration:

Option Description Default

maxWidth,
maxHeight

Defines the maximum size of images

that can be requested through this

renderer

Height: 3000 pixel

Width: 3000 pixel

defaultWidth,
defaultHeight

Defines the default dimensions to use, if

none are provided in the request.
Height: 300 pixel

Width: 300 pixel

The query parameters allow flexible use cases whilst only implying a minimum of

mandatory parameters. The basic parameters are the same as those used in the default

image-renderer.

Query

Parameter

Description Type Default

source Defines the two source images

from which the resulting image

is composed.

mandatory -

width &
height

Width and height of the

resulting image.

optional see default

values above

top, left,
bottom,
right

Parameters with values ranging

from 0 to 1. Used to request an

image region.

optional top: 0, left: 0,

bottom: 1,

right: 1

Retrieving Data from the Server | Template System

13 NeptuneLabs - Open API

Query

Parameter

Description Type Default

rect Four comma-separated values

ranging from 0 to 1 which can

be used instead of left, top,

right and bottom image is

cropped before placing it on

the left/right page. (four

comma-separated floating point

values specifying the top-left

corner and the width and

height)

optional 0, 0, 1, 1

colormode Two comma separated colors

defining the color filter for the

left and right image

optional red,cyan

preeffects Allows specifying image effects

that will be applied to the

source images before

composition. For details on the

effect syntax, the

corresponding part in the FSI

Server manual.

optional -

2.3 Template System

Info and List requests are also handled by specific renderers. This allows delivering meta

data that matches the images produced by the different image renderers. All info- and list-

renderers use a template system to actually render the gathered meta data. By supplying

custom templates the format of the resulting responses can therefore be easily adapted to

the needs of a client application. The template system used is Freemarker. A full

documentation of the freemarker language can be found on the website at http://

www.freemarker.org. The meta data provided in the templates depends on the renderer

and can be found in the tables in the following sections. The template the renderer will

use can be specified using the templateparameter in the request. Each template is made

up of an attributes section and the actual rendering information. The attributes section is

evaluated at the beginning of the rendering process and can therefore contain information

the renderer needs prior to the actual rendering.

http://www.freemarker.org/
http://www.freemarker.org/

Retrieving Data from the Server | Info Requests

NeptuneLabs - Open API 14

The supported attributes are listed in the following table:

Attribute

Name

Description Example / Possible Values

datasources Defines a list of datasources

used in this template. For

performance reasons only the

image meta data specified here

will be available when

rendering the template

'IPTC':'imagepool'

'EXIF':'imagepool'

'XMP':'imagepool'

or a comma-separated list

containing any number of the

above

headers Defines response headers

returned when processing

HTTP requests

'Content-Type':'application/

json;

charset=UTF-8'

2.4 Info Requests

Info requests are designed to deliver the meta data matching an image request. An info

request in general can provide access to all information available on a single or multiple

images, although specific renderers might only provide basic information.

A typical info request has at least the following parameters:

Parameter Description Example / Possible Values

type Mandatory parameter

specifying the request type
-

renderer Specifies the renderer to be

used.
Defined in server configuration

Retrieving Data from the Server | Info Requests

15 NeptuneLabs - Open API

Parameter Description Example / Possible Values

source Mandatory, specifies the image

requested.

-

template The template used to render

the response

Defined in server configuration

The current version of FSI Server comes with one Info renderer only.

2.4.1 Default Info Renderer

The default info-renderer provides access to all meta data available for a single image. This

includes file specific data like the last modified date and the file size, as well as image

specific data like the contents of IPTC and EXIF fields.

The following table includes all variables possibly available in the templates.

Parameter Description

info.src The file source path

info.size The file size

info.width The image width

info.height The image height

info.lastmodified The files last modification time

info.alpha True if the image contained an alpha

channel

Retrieving Data from the Server | Info Requests

NeptuneLabs - Open API 16

Parameter Description

info.importstatus The current import status:

0 - unknown 1 - imported

2 - queued 3 - error

info.iptc An array containing the IPTC

information

info.exif An array containing the EXIF

information

The templates for info requests delivered with FSI Server are located in WEBINF/

internal/templates/info in the installation directory. These should not be modified as they

are used by the webinterface and the FSI Viewer with all its add-ons. Custom templates

can simply be placed in the folder WEB-INF/ templates/info. Their filename must end with

the extension ".ftl".

As described in the previous chapter the define attribute in the templates allows

specifying template specific parameters used for rendering. The default info renderer

currently acknowledges only one value:

Define

attribute

Description Defaults

escape Defines the method used to escape special

characters. Possible values are: NONE – No

escaping. XML – Escapes the XML markup

delimiters as well as single and double quotation

marks. JSON – Escapes the data for usage in

JSON objects response

NONE

Retrieving Data from the Server | Info Requests

17 NeptuneLabs - Open API

The following example shows one of the templates delivered with FSI Server and has

comments on all important statements describing their function. Using this template

results in an XML response containing basic file data and selected iptc meta data.

<#ftl encoding="UTF-8"
attributes={

'define':{

'Escape':'XML'#

}

}>

Template attribute

definitions

<?xml version="1.0"
encoding="UTF-8" ?>

<fsi:FSI xmlns:fsi="http://
www.fsi-

viewer.com/schema">

Static code which comes out

unmodified.

<Image>

<Path value="${info.src}"/>

<#if info.width??><Width

value="${info.width}"/></#if>

<#if info.height??><Height

value="${info.height}"/></#if>

</Image>

Prints the image file path

and the width and height

of the image.

<#if info.iptc??> Checks if there is any IPTC data

available.

Retrieving Data from the Server | List Requests

NeptuneLabs - Open API 18

<Options>

<#if info.iptc["FSI
SceneSets"]??>

<SceneSets>

${info.iptc["FSI SceneSets"]}

</SceneSets>

</#if>

<#if info.iptc["Caption"]??>

<iptc_caption>

${info.iptc["Caption"]}

</iptc_caption>

</#if>

</Options>

</#if>

</fsi:FSI>

Prints the contents of the FSI SceneSets

and the Caption IPTC Fields.

2.5 List Requests

List-renderers deliver lists of images and directories. They can be used to develop client

application that allow browsing through the directory structure as well as applications

that present a set of images like FSI Pages and FSI Showcase. As with Info requests the

output format can be adapted by providing custom templates. The current version of FSI

Server comes with one list renderer only.

2.5.1 Default List Renderer

The default list-renderer allows accessing directory meta data as well as basic image meta

data like image dimensions, file size and import status. Detailed image meta data like the

contents of IPTC and EXIF fields is not available for performance reasons. The full list of

Retrieving Data from the Server | List Requests

19 NeptuneLabs - Open API

variables available in the list templates when using this renderer is shown in the following

table:

Parameter Description

currentDir The path to the current directory

summary. entryCount The total number of entries in the list

summary. imagecount The number of images in the list

summary. directoryCount The number of directories

summary. completeCount

summary. lastModified The last modified date of the requested directory

restrictions. readOnly True if the directory is read-only

restrictions. writeEnabled

restrictions. downloadOrigin True if downloading the original image files from

this directory is permitted

ilist A list containing entries for the images and

subdirectories in the requested directory. Each

entry has a property type which is either

"directory" or "image". Depending on the type,

the entries have more properties: Image entries

have the info properties described in XX (Default

Info Renderer), whereas directory entries have

two properties: hasSub, which is true if the

directory has further subdirectories and sub

which contains the number of subdirectories.

Retrieving Data from the Server | Search Requests

NeptuneLabs - Open API 20

2.6 Search Requests

Search requests result in lists of images matching certain search queries. The output is

rendered using the list templates, so the output format can be modified by providing

custom templates and placing them in the WEB-INF/templates/list folder. The search

syntax is described in detail in the section Search Bar in the FSI Server manual.

https://doc-admin.neptunelabs.com/display/FS/Search+Bar
https://doc-admin.neptunelabs.com/display/FS/Search+Bar

Modifying Data | Interface Overview

21 NeptuneLabs - Open API

3 Modifying Data

As mentioned in the introduction, the part of the API used to manage images on the

server is also HTTP based and uses a REST-like style. Strictly speaking it is not REST as it

requires cookies for authentication and provides upload functionalities via POST in

addition to the PUT method to allow writing parts of the client applications in flash.

3.1 Interface Overview

The API allows creating, deleting and renaming directories as well as uploading, deleting,

renaming and downloading files. Actions performed on directories are always addressed

using URLs of the form:

http://your.fsi-server.com/fsi/service/directory/path/to/directory

Actions perfomed on files are always addressed using the following syntax:

http://your.fsi-server.com/fsi/service/file/path/to/file

In addition to the two URLs above, login and logout requests are necessary to create and

destroy the session and keep alive requests can be sent to prevent sessions from expiring.

These requests need to be addressed at:

http://your.fsi-server.com/fsi/service/login

http://your.fsi-server.com/fsi/service/logout

and

http://your.fsi-server.com/fsi/service/sessionrefresh

All responses to requests will be XML or JSON depending on the accept header sent in

the request. Commonly used responses are listed in section "Messages used in

Management Requests", including examples of what they will look like in XML and JSON

format as well a detailed description of the response content.

http://your.fsi-server.com/fsi/service/directory/path/to/directory
http://your.fsi-server.com/fsi/service/directory/path/to/directory
http://your.fsi-server.com/fsi/service/directory/path/to/directory
http://your.fsi-server.com/fsi/service/directory/path/to/directory
http://your.fsi-server.com/fsi/service/directory/path/to/directory
http://your.fsi-server.com/fsi/service/directory/path/to/directory
http://your.fsi-server.com/fsi/service/directory/path/to/directory
http://your.fsi-server.com/fsi/service/directory/path/to/directory
http://your.fsi-server.com/fsi/service/directory/path/to/directory
http://your.fsi-server.com/fsi/service/file/path/to/file
http://your.fsi-server.com/fsi/service/file/path/to/file
http://your.fsi-server.com/fsi/service/file/path/to/file
http://your.fsi-server.com/fsi/service/file/path/to/file
http://your.fsi-server.com/fsi/service/file/path/to/file
http://your.fsi-server.com/fsi/service/file/path/to/file
http://your.fsi-server.com/fsi/service/file/path/to/file
http://your.fsi-server.com/fsi/service/file/path/to/file
http://your.fsi-server.com/fsi/service/file/path/to/file
http://your.fsi-server.com/fsi/service/login
http://your.fsi-server.com/fsi/service/login
http://your.fsi-server.com/fsi/service/login
http://your.fsi-server.com/fsi/service/login
http://your.fsi-server.com/fsi/service/login
http://your.fsi-server.com/fsi/service/login
http://your.fsi-server.com/fsi/service/logout
http://your.fsi-server.com/fsi/service/logout
http://your.fsi-server.com/fsi/service/logout
http://your.fsi-server.com/fsi/service/logout
http://your.fsi-server.com/fsi/service/logout
http://your.fsi-server.com/fsi/service/logout
http://your.fsi-server.com/fsi/service/sessionrefresh
http://your.fsi-server.com/fsi/service/sessionrefresh
http://your.fsi-server.com/fsi/service/sessionrefresh
http://your.fsi-server.com/fsi/service/sessionrefresh
http://your.fsi-server.com/fsi/service/sessionrefresh
http://your.fsi-server.com/fsi/service/sessionrefresh

Modifying Data | Authentication

NeptuneLabs - Open API 22

3.2 Authentication

The authentication is handled by FSI Server itself to be independent of the application

server and allow a more flexible user management. In order to authenticate itself a client

application must be able to handle cookies. If it has received a cookie from the server, this

cookie must be sent with every following request to the server.

Two requests are necessary to authenticate the client application. The first is a GET

request addressed at the Login URL:

http://your.fsi-server.com/fsi/service/login

This returns a JSON or an XML response. If the server is not ready to authenticate users,

the response will contain an error message describing the problem. If the server is ready

the response will describe how the password needs to be submitted to the FSI Server as

a value for loginmethod. By default the value will be hash, stating that a password hash is

submitted instead of the password itself. If FSI Server is configured to autheticate against a

Kerberos Server though, then the password itself is required by the server. If the login

method is stated to be hash, then the response also contains a salt. The exact format of

the response and the possible values is described in "SaltResponse". The client application

must then use the salt to create a password hash using a SHA-256 algorithm of the form

hash = sha256(salt + sha256(password))

where the plus is the concatenation of two strings. The resulting hash or the plain

password is then posted to the Login URL as value of a variable called password together

with the login name as value of username. The response to this post request will include a

state which is either success of failed and a message including details on the failure. In case

of success the response will also contain the number of seconds until the valid session will

expire. This response is described in "LoginResponse".

If an inactive client application wants to extend the session without performing any

actions it can send GET requests to

http://your.fsi-server.com/fsi/service/sessionrefresh

http://your.fsi-server.com/fsi/service/login
http://your.fsi-server.com/fsi/service/login
http://your.fsi-server.com/fsi/service/login
http://your.fsi-server.com/fsi/service/login
http://your.fsi-server.com/fsi/service/login
http://your.fsi-server.com/fsi/service/login
http://your.fsi-server.com/fsi/service/sessionrefresh
http://your.fsi-server.com/fsi/service/sessionrefresh
http://your.fsi-server.com/fsi/service/sessionrefresh
http://your.fsi-server.com/fsi/service/sessionrefresh
http://your.fsi-server.com/fsi/service/sessionrefresh
http://your.fsi-server.com/fsi/service/sessionrefresh

Modifying Data | Managing directories

23 NeptuneLabs - Open API

If the session is valid the response will contain the number of seconds until the session

will expire. See also "SessionRefreshResponse".

When the user logs out or when the client application has completed its tasks or exits it

should log out. This is done by sending a GET request to

http://your.fsi-server.com/fsi/service/logout

This destroys the session and returns an empty response.

3.3 Managing directories

Provided the logged in user has the appropriate permissions, directories can be created,

renamed or deleted using the API. All requests need to be directed at the directories URI:

http://your.fsi-server.com/fsi/service/directory/path/to/directory

All requests will be responded to with XML or JSON responses, depending on the accept-

header sent.

3.3.1 Creating directories

To create a directory on the server the client application has to send a PUT request to

the directory URI. This requires that at least the source connector exists (in the example

it would have to be called "path"). The response is an ActionResponse (see

Section "Action Response") and will inform about success or failure.

3.3.2 Deleting directories

Directories can the deleted by sending an HTTP DELETE request to the directory URI.

The response to a delete request will also be an ActionResponse. Sending a delete

request will recursively delete the directory, including all subdirectories and images.

http://your.fsi-server.com/fsi/service/logout
http://your.fsi-server.com/fsi/service/logout
http://your.fsi-server.com/fsi/service/logout
http://your.fsi-server.com/fsi/service/logout
http://your.fsi-server.com/fsi/service/logout
http://your.fsi-server.com/fsi/service/logout
http://your.fsi-server.com/fsi/service/directory/path/to/directory
http://your.fsi-server.com/fsi/service/directory/path/to/directory
http://your.fsi-server.com/fsi/service/directory/path/to/directory
http://your.fsi-server.com/fsi/service/directory/path/to/directory
http://your.fsi-server.com/fsi/service/directory/path/to/directory
http://your.fsi-server.com/fsi/service/directory/path/to/directory
http://your.fsi-server.com/fsi/service/directory/path/to/directory
http://your.fsi-server.com/fsi/service/directory/path/to/directory
http://your.fsi-server.com/fsi/service/directory/path/to/directory

Modifying Data | Managing files

NeptuneLabs - Open API 24

Deleted directories and images are deleted from the servers internal storage and the

source folder. FSI Server does not keep backups, so deleted images can not be restored.

3.3.3 Renaming directories

Directories can be renamed by sending a POST request to the directory URI. The POST

request must contain a form parameter called to with the new pathname of the directory

as value. As renaming will affect all subdirectories and included images, renaming directory

containing lots of data will result in massive restructuring of the internal storage.

Renaming large directories therefore might take a while. The POST request to rename

directories will return an ActionResponse.

3.3.4 Re-importing directories

Although it should not be necessary a client application can trigger the reimport of all

images in a directory. To schedule a directory for re-import a POST request containing a

form parameter named reimport with the value true needs to be sent to the directory

URI. Depending on the current number of images in the import queue the re-import

might not take place immediately. As long as the re-import has not started the data from

the original import is accessible from the FSI Server. As most requests to modify data on

the server, this too will return an ActionResponse.

3.4 Managing files

The operations provided to manage files are similar to those provided for directories. The

API allows uploading, deleting, renaming and downloading files. Manipulation of images

directly on the server is not supported. FSI Server 2016 allows manipulating file metadata,

as long as the file is used in FSI Servers context. The manipulated metadata is not written

to the source file. All operation requests need to be addressed to the File URI:

http://your.fsi-server.com/fsi/service/file/path/to/file

3.4.1 Uploading files

Files can be uploaded by sending an HTTP PUT request to the file URI. The body of the

request should contain the file data or if the last modified date of the image is relevant, an

XML or JSON document wrapping the file. In the latter case the XML root node should

http://your.fsi-server.com/fsi/service/file/path/to/file
http://your.fsi-server.com/fsi/service/file/path/to/file
http://your.fsi-server.com/fsi/service/file/path/to/file
http://your.fsi-server.com/fsi/service/file/path/to/file
http://your.fsi-server.com/fsi/service/file/path/to/file
http://your.fsi-server.com/fsi/service/file/path/to/file
http://your.fsi-server.com/fsi/service/file/path/to/file
http://your.fsi-server.com/fsi/service/file/path/to/file
http://your.fsi-server.com/fsi/service/file/path/to/file

Modifying Data | Managing files

25 NeptuneLabs - Open API

be called “file” and it should contain the nodes “lastModified” (specifiying the date as a

Unix timestamp) and “data” containing the file data. A JSON representation should

contain the two values as object fields. To allow checking if a file can be uploaded prior to

transmitting the file data, the client application can send a POST request including the

desired location and filesize. This request must be addressed to:

http://your.fsi-server.com/fsi/service/postupload

The content type should be "application/x-www-form-urlencoded" and the request

should include the form parameters filesize, filename, dir and lastmodified. The response

will be an ActionResponse and will inform the Client about any problems that might

occur if an upload is attempted. Not all file type can be uploaded to arbitrary locations.

For storage and multiresolution source connectors, only known image files are accepted.

As the Adobe Flash browser plug-in allows selecting multiple files but cannot send PUT

requests the API also allows uploading files through POST requests. The POST request

must be directed at the file URI and the response to this request is also an

ActionResponse. The possible return values and status codes for the upload and pre-

upload requests can be found in the following table.

Code Description

2xx Ok resp. proceed with upload

310 File too large

311 Unusable data uploaded

401 Not authorized (Session expired)

403 Forbidden (Access to directory denied)

404 Target directory does not exist

409 Invalid Image Path

http://your.fsi-server.com/fsi/service/postupload
http://your.fsi-server.com/fsi/service/postupload
http://your.fsi-server.com/fsi/service/postupload
http://your.fsi-server.com/fsi/service/postupload
http://your.fsi-server.com/fsi/service/postupload
http://your.fsi-server.com/fsi/service/postupload

Modifying Data | Managing files

NeptuneLabs - Open API 26

Code Description

413 Insufficient storage space

When uploading large files it can be helpful to keep track of the upload progress. In order

to allow this, the FSI Server API allows requesting the current state of the upload by

sending a GET request to:

http://your.fsi-server.com/fsi/service/uploadstatus/path/to/file

The response to this request will be an XML or JSON containing the number of bytes

already uploaded as well as the total number of bytes expected.

3.4.2 Downloading files

If permitted by the source connector, the original files can be downloaded. A GET request

directed at the file URI will result in a download of the unmodified source file if the

request oes not contain an accept header preventing an image/* type. If the requests only

accepts application/xml or application/json, then the response will contain an image

message body containing metadata as described in "Image Message".

3.4.3 Deleting files

Just like directories, files can be deleted by sending an HTTP DELETE request to the file

URI. If permitted, the file will be deleted from the source connector directory as well as

from the internal storage if appropriate. By default the deleted files will be moved to the

trash folder and are not deleted permanently.

http://your.fsi-server.com/fsi/service/uploadstatus/path/to/file
http://your.fsi-server.com/fsi/service/uploadstatus/path/to/file
http://your.fsi-server.com/fsi/service/uploadstatus/path/to/file
http://your.fsi-server.com/fsi/service/uploadstatus/path/to/file
http://your.fsi-server.com/fsi/service/uploadstatus/path/to/file
http://your.fsi-server.com/fsi/service/uploadstatus/path/to/file
http://your.fsi-server.com/fsi/service/uploadstatus/path/to/file
http://your.fsi-server.com/fsi/service/uploadstatus/path/to/file
http://your.fsi-server.com/fsi/service/uploadstatus/path/to/file

Modifying Data | Managing trash

27 NeptuneLabs - Open API

3.4.4 Renaming / moving files

The renaming resp. moving is performed through an POST request directed at the file

URI. The request body needs to contain a parameter named to with the new path/

filename combination as value. Again, the response to expect is an ActionReponse. When

moving files between different source connectors, the move request might be rejected if

the target source connector does not support the specified file type.

3.4.5 Re-importing images

A re-import of an image can be triggered by sending a POST request to the file URI with

a parameter named reimport and a value of true. As documented in section "Re-

importing directories" the re-import must not necessarily take place immediately but is

instead appended to the end of the source managers import queue.

3.5 Managing trash

FSI Server 2016 places all deleted files in a trash directory located within the internal

storages directory structure. A user/client application can list the contents of the trash he

has access to, by sending a standard list request with _trash as a value for

the source parameter.

The response will contain an ID to reference the trash entry as well as a description

including the original files location. This ID can the be used to as a source for a move

request as described in "Renaming / moving files".

3.6 Download and Batch Processing

In addition to downloading single files as described in section "Downloading files", FSI

Server 2016 adds a feature to compose an archive of multiple source files as well as

multiple rendered images. All operations regarding the control of batch processes are

POST requests directed at:

http://your.fsi-server.com/fsi/service/jobqueue

https://www.neptunelabs.com/manuals/docs/fsi-open-api-1/Content/Renaming%20-%20moving%20files.htm
http://your.fsi-server.com/fsi/service/jobqueue
http://your.fsi-server.com/fsi/service/jobqueue
http://your.fsi-server.com/fsi/service/jobqueue
http://your.fsi-server.com/fsi/service/jobqueue
http://your.fsi-server.com/fsi/service/jobqueue
http://your.fsi-server.com/fsi/service/jobqueue

Modifying Data | Download and Batch Processing

NeptuneLabs - Open API 28

The mandatory and optional form parameters are summarized in the following table:

Parameter Decription Type Def

ault

cmd the command to execute

createAndStart

cancel

restart

mandatory -

name the name of the new archive.

Applies to createAndStart only

- -

archiveType the type of the new archive

(zip, tar.gz or tar.bz2). Applies

to createAndStart only

- zip

file path and filename of the file to

add to the archive. Multiple

occurences supported. Applies

to createAndStartonly

mandatory

for

createAndSta

rt

-

renderingQuery if present the rendering option

will be applied to all images

before archiving. Applies

to createAndStart only

optional -

scheduleDate a Unix timestamp when to

start processing. Applies

to createAndStartonly

optional -

id the id of the job to restart or

to cancel

mandatory

for cancel

and restart

-

Once submitted a queued job and its id (for canceling and restarting) can be found in the

list of batch-jobs by sending a standard list request using _download as value for the

Modifying Data | Preferences

29 NeptuneLabs - Open API

source parameter. The list will also contain the current status and, for running processes,

the current progress. Archives created by completed jobs can be downloaded using a

standard download request as described in section "Downloading files".

3.7 Preferences

FSI Server allows setting global and user specific preferences for client applications to use.

These are simple key-value pairs and can be set by editing XML files on the server or

using the administration interface provided by FSI Administrator. More on setting

preferences can be found in the FSI Server manual. A client application can access the

preferences by sending a GET request to the following URL:

http://your.fsi-server.com/fsi/service/prefs

The result will be an XML or JSON representation of the preferences stored on the

server for the currently logged in user. Modifying the preferences by the client application

itself is not supported.

3.8 Changing the password

 Changing the password requires more than a single request. For security reasons the new

password should not be transmitted in plain text and the old password is required to

allow client applications to include measures against captured sessions. The password

change consists of two requests, both directed at the password resource URI: http://

your.fsi-server.com/fsi/service/password. The first request is a GET request to acquire a

salt. Similar to the login procedure, this salt is used to create a hash of the old password.

This hash is then transferred together with an SHA-256 hash of the new password

wrapped in an XML message. This message needs to be sent to the password URI using a

put request. The exact format of the required message can be seen in "Password

Message".

3.9 Messages used in Management Requests

On the serverside the request and response bodies are represented by Java objects

derived from classes containing JAXB annotations. This chapter discusses the message

types in detail and provides the XML Schema documents describing the message content.

Depending on the accept header sent by the client the server will return either the XML

http://your.fsi-server.com/fsi/service/prefs
http://your.fsi-server.com/fsi/service/prefs
http://your.fsi-server.com/fsi/service/prefs
http://your.fsi-server.com/fsi/service/prefs
http://your.fsi-server.com/fsi/service/prefs
http://your.fsi-server.com/fsi/service/prefs
http://your.fsi-server.com/fsi/service/password
http://your.fsi-server.com/fsi/service/password
http://your.fsi-server.com/fsi/service/password
http://your.fsi-server.com/fsi/service/password
http://your.fsi-server.com/fsi/service/password
http://your.fsi-server.com/fsi/service/password

Modifying Data | Messages used in Management Requests

NeptuneLabs - Open API 30

or JSON representation of a message. The XML format can be derived directly from the

XSD provided. The JSON messages are created by Jettison using the "mapped" notation.

If the client application is implemented using Java, developers do not need to spend time

on parsing message bodies. Instead the classes contained in the FSI Server Development

Pack can be used together with the JAX-RS Client API to easily develop clients without

the needs to manually implement the communications part. An example Java codesnip can

be found in Section "Example Code" and is also part of the development pack. If the XML

Schema definitions are needed to derive implementations in other languages they can

easily be created from the Java files in the FSI Server Dev Pack using schemagen which is

part of the current Java SE 6 versions.

3.9.1 Action Response

The Action Response is used to confirm a request has completed successfully or to notify

the client application of any errors that prevented the FSI Server from completing the

action.

XML Schema for the Action Response Message

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema version="1.0" xmlns:xs= "http://www.w3.org/2001/XMLSchema">

<xs:element name="response" type="actionResponse"/>
 <xs:complexType name="actionResponse">
 <xs:sequence>
 <xs:element name="cause" type="xs:string" minOccurs="0"/
>
 <xs:element name="details" type="xs:string"
minOccurs="0"/>
 <xs:element name="statuscode" type="xs:int"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

Depending on the request headers the Action Response can be formatted as XML or

JSON. The following shows two example return messages.

Modifying Data | Messages used in Management Requests

31 NeptuneLabs - Open API

Example Action Response in XML format

<?xml version="1.0" encoding="UTF-8 standalone="yes"?>
<response>
 <statuscode>311</statuscode>
 <cause>Unsupported filetype or broken image
 </cause>
</response>

Example Action Response in XML format

{
"statuscode":"311",
"cause":"Unsupported filetype or broken image"
}

3.9.2 SaltResponse

The SaltResponse is returned when addressing a GET request at the Login URL. It

contains the login method stating how the send the password and optionally a salt, or a

message why the server is not ready for users or client applications to log in.

Modifying Data | Messages used in Management Requests

NeptuneLabs - Open API 32

XML Schema for the Salt Response Message

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<xs:schema version="1.0"xmlns:xs="http://www.w3.org/2001/
XMLSchema">

<xs:element name="saltResponse"

type="saltResponse"/>

<xs:complexType name="saltResponse">

<xs:sequence>

<xs:element name="state" type="xs:string"

minOccurs="0"/>

<xs:element name="salt" type="xs:string"

minOccurs="0"/>

<xs:element name="message" type="xs:string"

minOccurs="0"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

3.9.3 LoginResponse

The Login Response will be sent as reply to a POST request directed at the login URL. If

the transmitted credentials were verified and the login succeeded the response will

contain a success state and the number of seconds before the session will expire, if no

further requests are received. If it fails a message describing the reason for the failure will

be included.

Modifying Data | Messages used in Management Requests

33 NeptuneLabs - Open API

XML Schema for the Login Response Message

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<xs:schema version="1.0 xmlns:xs=

"http://www.w3.org/2001/XMLSchema">

<xs:element name="loginresponse"

type="loginResponse"/>

<xs:complexType name="loginResponse">

<xs:sequence>

<xs:element name="state" type="xs:string"

minOccurs="0"/>

<xs:element name="messageCode" type="xs:int"/>

<xs:element name="message" type="xs:string"

minOccurs="0"/>

<xs:element name="expiry" type="xs:long"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

3.9.4 SessionRefreshResponse

The SessionRefreshResponse is returned when addressing requests to the session refresh

URL described in "Authentication". The response is made up of a single value containing

the number of seconds until the session expires.

Modifying Data | Messages used in Management Requests

NeptuneLabs - Open API 34

XML Schema for the Session Refresh Response Message

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<xs:schema version="1.0 xmlns:xs=

"http://www.w3.org/2001/XMLSchema">

<xs:element name="sessionrefreshresponse"

type="sessionRefreshResponse"/>

<xs:complexType name="sessionRefreshResponse">

<xs:sequence>

<xs:element name="expiry" type="xs:long"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

3.9.5 PrefsResponse

The PrefsResponse is returned when requesting the users preferences

(see "Preferences"). It contains a list of keys assigned to arrays of values.

Modifying Data | Messages used in Management Requests

35 NeptuneLabs - Open API

XML Schema for the Prefs Response Message

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<xs:schema version="1.0" xmlns:xs=

"http://www.w3.org/2001/XMLSchema">

<xs:element name="prefs" type="prefsResponse"/>

<xs:complexType name="prefsResponse">

<xs:sequence>

<xs:element name="pref" type="pref"

minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="pref">

<xs:sequence>

<xs:element name="value" type="xs:string"

minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="name" type="xs:string"/>

</xs:complexType>

</xs:schema>

3.9.6 UploadStatusResponse

The UploadStatusResponse is sent when requesting information on the progress of

currently running uploads as described in "Uploading files".

Modifying Data | Messages used in Management Requests

NeptuneLabs - Open API 36

XML Schema for the Upload Status Response Message

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<xs:schema version="1.0" xmlns:xs=

"http://www.w3.org/2001/XMLSchema">

<xs:element name="UploadStatusResponse"

type="uploadStatusResponse"/>

<xs:complexType name="uploadStatusResponse">

<xs:sequence>

<xs:element name="uploaded" type="xs:long"/>

<xs:element name="total" type="xs:long"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

3.9.7 BooleanResponse Message

 This message type is only used to respond to logout requests. It will contain a value of

either true or false.

Modifying Data | Messages used in Management Requests

37 NeptuneLabs - Open API

XML Schema for the Boolean Response Message

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<xs:schema version="1.0" xmlns:xs=

"http://www.w3.org/2001/XMLSchema">

<xs:element name="booleanResponse"

type="booleanResponse"/>

<xs:complexType name="booleanResponse">

<xs:sequence>

<xs:element name="value" type="xs:boolean"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

3.9.8 Image Message

This message type is used when sending PUT requests to file URIs in order to upload files

as described in "Uploading files" or as response message body when sending GET

requests with the appropriate accept header to file URIs. When using this message type in

conjunction with GET requests the data part will be left empty, so that this kind of

request can be considered as a simplified info request. This is only implemented for

completeness. Large scale client applications should consider using info requests as

described in "Info Requests" instead.

Modifying Data | Messages used in Management Requests

NeptuneLabs - Open API 38

XML Schema for the Image Message

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<xs:schema version="1.0" xmlns:xs=

"http://www.w3.org/2001/XMLSchema">

<xs:element name="image" type="image"/>

<xs:complexType name="image">

<xs:sequence>

<xs:element name="data" type="xs:base64Binary"

minOccurs="0"/>

<xs:element name="fileSize" type="xs:long"/>

<xs:element name="lastModified"

type="xs:long"/>

<xs:element name="targetPath" type="xs:string"

minOccurs="0"/>

</xs:sequence>

</xs:complexType>

3.9.9 Directory Message

Used in the message body to respond to GET requests directed at directory URIs. These

requests are comparable to the list requests described in section "List Requests". but

provide only file system based information.

Modifying Data | Messages used in Management Requests

39 NeptuneLabs - Open API

XML Schema for the Directory Message

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<xs:schema version="1.0" xmlns:xs=

"http://www.w3.org/2001/XMLSchema">

<xs:element name="dirEntry" type="dirEntry"/>

<xs:element name="directory" type="directory"/>

<xs:element name="imageEntry" type="imageEntry"/>

<xs:complexType name="imageEntry">

<xs:sequence/>

<xs:attribute name="name" type="xs:string"/>

<xs:attribute name="lastModified" type="xs:long"

use="required"/>

<xs:attribute name="size" type="xs:long"

use="required"/>

</xs:complexType>

<xs:complexType name="dirEntry">

<xs:sequence/>

<xs:attribute name="name" type="xs:string"/>

</xs:complexType>

<xs:complexType name="directory">

<xs:sequence>

<xs:element name="image" type="imageEntry"

minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="subdirectory" type="dirEntry"

minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

Modifying Data | Messages used in Management Requests

NeptuneLabs - Open API 40

XML Schema for the Directory Message

</xs:schema>

3.9.10 Password Message

This message format is used as a message body in the PUT requests sent to the server in

order to change the password. For details on how the complete procedure of a password

change looks like, please refer to chapter "Changing the password".

XML Schema for the Password Message

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<xs:schema version="1.0"xmlns:xs=

"http://www.w3.org/2001/XMLSchema">

<xs:element name="passwordchange"

type="password"/>

<xs:complexType name="password">

<xs:sequence>

<xs:element name="newpasswordhash"

type="xs:string" minOccurs="0"/>

<xs:element name="oldpasswordhash"

type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

Modifying Data | Example Code

41 NeptuneLabs - Open API

3.10 Example Code

The following Java codesnip shows how easy it is to develop a client application using FSI

Servers API. Only a few lines of code are necessary to log in, upload an image and log out

again. The example requires the FSI Server Dev Pack which can be downloaded from

https://www.neptunelabs.com/ as well as the Jersey Client bundle available at http://

jersey.dev.java.net. The FSI Server Dev Pack contains a jar file which includes the JAXB

classes representing the request and response messages as described in "Messages used in

Management Requests".

https://www.neptunelabs.com/
https://www.neptunelabs.com/
http://jersey.dev.java.net
http://jersey.dev.java.net

Modifying Data | Example Code

NeptuneLabs - Open API 42

// initialize client

ApacheHttpClientConfig clientconfig =

new DefaultApacheHttpClientConfig();

clientconfig.getProperties().put(

ApacheHttpClientConfig.PROPERTY_HANDLE_

COOKIES,true);

Client c = ApacheHttpClient.create(clientconfig);

// send a GET request to obtain the salt

WebResource r =

c.resource

("http://your.fsi-server.com/fsi/service/login");

SaltResponse sr = r.get(SaltResponse.class);

String salt = sr.salt;

// combine password with salt and generate login hash

String passwordhash = randomHelper.sha256(password);

String loginhash = randomHelper.sha256(salt + passwordhash);

// send login request

Form form = new Form();

form.add("username", username);

form.add("password", loginhash);

LoginResponse lr = r.post(LoginResponse.class, form);

if (lr.state.equals("success")) {

// create object to upload

Modifying Data | Example Code

43 NeptuneLabs - Open API

Image i = new Image();

File imagefile = new File(testfile);

byte[] filedata = ... // read from disk …

i.setData(filedata);

i.setFileSize(imagefile.length());

i.setLastModified(imagefile.lastModified());

// create resource to upload the image to

WebResource imageresource

= c.resource("http://your.fsi-server.com/"

+ "fsi/service/image/samples/image.tif");

// upload the image using a PUT request

ActionResponse ar =

imageresource.put(ActionResponse.class, i);

[… check status and handle errors …]

// logout

WebResource logoutresource

= c.resource("http://your.fsi-server.com"

+ "/fsi/service/logout");

logoutresource.get(BooleanResponse.class);

}

Appendix | Links to resources

NeptuneLabs - Open API 44

4 Appendix

4.1 Links to resources

https://www.neptunelabs.com/: Home of the FSI Viewer and FSI Server. The download

area requires free registration and provides the latest versions of all NeptuneLabs FSI

applications.

https://jersey.java.net: Jersey is the JAX-RS implementation used by FSI Server to provide

the part of the API that allows modifying data on the server.

http://jettison.codehaus.org: Java API used by Jersey to read and write JSON.

http://www.freemarker.org: The template engine used to render Info and List requests.

4.2 Changes in the OpenAPI

To make the transition from previous version of FSI Server to FSI Server 2016 as easy as

possible for third party applications, the changes in the OpenAPI were reduced to the

necessary minimum. Most custom code should run without requiring modifications. In

detail, the changes where client code might be affected are as follows:

The login process has been extended to support plain text password required for server

side Kerberos authentication. If your FSI Server does use Kerberos authentication, the

client application will have to be modified the bahve as stated in section"Authentication".

The designated service user and the status request for monitoring FSI Server have been

dropped in favour of a JMX interface. Detailed information on the JMX interface is

available in the FSI Server manual.

In addition to the above mentioned some parameter names have been deprecated. They

are still supported for compatibility reasons, but should be changed in code generated

after the FSI Server 2016 release date.

https://www.neptunelabs.com/
https://www.neptunelabs.com/
https://jersey.java.net/
https://jersey.java.net/
http://jettison.codehaus.org/
http://jettison.codehaus.org/
http://www.freemarker.org/
http://www.freemarker.org/

Appendix | Changes in the OpenAPI

45 NeptuneLabs - Open API

In the requests directed to the FSI Server for image or metadata retrieval the old

parameter profile is replaced by the new renderer.

Furthermore the parameter tpl has been replaced by template for readability.

As FSI Server 2016 supports all kind of digital assets and no longer only images, the

service requests to manage files on the server have changed from .../service/

image/... to .../service/file/...

	Introduction
	Retrieving Data from the Server
	Request Types
	Image Requests
	Default Image Renderer
	Double Page Image Renderer
	Anaglyph Image Renderer

	Template System
	Info Requests
	Default Info Renderer

	List Requests
	Default List Renderer

	Search Requests

	Modifying Data
	Interface Overview
	Authentication
	Managing directories
	Creating directories
	Deleting directories
	Renaming directories
	Re-importing directories

	Managing files
	Uploading files
	Downloading files
	Deleting files
	Renaming / moving files
	Re-importing images

	Managing trash
	Download and Batch Processing
	Preferences
	Changing the password
	Messages used in Management Requests
	Action Response
	SaltResponse
	LoginResponse
	SessionRefreshResponse
	PrefsResponse
	UploadStatusResponse
	BooleanResponse Message
	Image Message
	Directory Message
	Password Message

	Example Code

	Appendix
	Links to resources
	Changes in the OpenAPI

