
FSI Open API

User Manual

OpenAPI Documentation for
FSI Server

NeptuneLabs GmbH
Lagesche Str. 32
D-32657 Lemgo
Germany

© 2009-2015 NeptuneLabs. All rights reserved.

Last updated: September 2014
FSI Server Version: 3.0
ManualRevision: 001

All brands and product names are trademarks or registered trademarks of the respective producers.
FSI Viewer, FSI Server and NeptuneLabs are registered trademarks of NeptuneLabs GmbH, Germany.

Table of Contents

1 Introduction 1
2 Retrieving Data from the Server 2
2.1 Request Types 2
2.2 Image Requests 2
2.2.1 Default Image Renderer 3
2.2.2 Double Page Image Renderer 4
2.2.3 Anaglyph Image Renderer 6

2.3 Template System 8
2.4 Info Requests 9
2.4.1 Default Info Renderer 9

2.5 List Requests 12
2.5.1 Default List Renderer 12

2.6 Search Requests 13
3 Modifying Data 15
3.1 Interface Overview 15
3.2 Authentication 15
3.3 Managing directories 16
3.3.1 Creating directories 17
3.3.2 Deleting directories 17
3.3.3 Renaming directories 17
3.3.4 Re-importing directories 17

3.4 Managing files 18
3.4.1 Uploading files 18
3.4.2 Downloading files 19
3.4.3 Deleting files 19
3.4.4 Renaming / moving files 19
3.4.5 Re-importing images 20

3.5 Managing trash 20
3.6 Download and Batch Processing 20
3.7 Preferences 21
3.8 Changing the password 22

3.9 Messages used in Management Requests 22
3.9.1 Action Response 23
3.9.2 SaltResponse 24
3.9.3 LoginResponse 24
3.9.4 SessionRefreshResponse 25
3.9.5 PrefsResponse 26
3.9.6 UploadStatusResponse 26
3.9.7 BooleanResponse Message 27
3.9.8 Image Message 27
3.9.9 Directory Message 28
3.9.10 Password Message 29

3.10 Example Code 30
Appendix 33
A Links to resources 33
B Changes in the OpenAPI 33

Index 35

NeptuneLabs - OpenAPI for FSI Server 1

1 Introduction
This document provides an insight in how to use the FSI Server from a developers point
of view.Whereas the manual describes the setup, administration and every dayusage
of the FSI Server, this guide is directed to developers integrating FSI Server in complex
environments or designing client applications. The FSI Server offers an extensive API
providing access to the full functionality of the server.

This document refers to FSI Server 2016 or above, although most parts also apply to
previous versions. For maintainers of third party applications using the FSI Server
OpenAPI will find the changes to previous versions explicitly listed in Appendix B.

The API can be considered to be split into two main parts. The first part is the servers
core task: image and meta data delivery in real time. FSI Server is highly configurable to
deliver the content needed in the correct format needed. The second part of the API is a
REST-like interface to manage the data on the server. It allows basic operations like
uploading and deleting items from the server. All parts of the API use the standardized
Hypertext Transfer Protocol (HTTP) allowing applications to be developed in every
modern programming language.

1 Introduction

2 Retrieving Data from the Server

2 NeptuneLabs - OpenAPI for FSI Server

2 Retrieving Data from the Server
The FSI Servers primary task is to provide quick access to images, image ranges and
image meta data,mainly for web usage. The available output formats for images are
therefore limited to what modern browsers can display. The output format for meta
data can be modified to match the developers needs byproviding templates.

2.1 Request Types

All HTTP requests to this part of the server API are GET or POST requests. Every
request must contain a mandatory parameter named type which specifies the
expected return value. Currently available types are image, info, list, search and
appinfo . The appinfo type is only meant for usage by NeptuneLabs Client
applications like FSI Viewer. The other types are discussed in detail in the following
sections. Image, info and list requests are always directed at a certain renderer
which defines the internal methods used to handle the request. Renderers are
defined by XML files in a directory called renderers in the FSI Servers main config
directory. More detailed information on renderers can be found in the FSI Server
manual in Part 1, chapter 3.5.8.

2.2 Image Requests

In general, image requests are GET requests and are identified by the value image
for the parameter type. Except for error cases, responses to image requests will
always contain image data. The resulting image format depends on the renderer
addressed. The renderer also defines the specific image-renderer used and the
optionally applied image effects.
The image request is evaluated and depending on the renderer settings, the
request is passed on to the image-renderer which assembles the image from the
data stored in the internal storage or the multiresolution files. If any effects are
specified in the renderer or in the request parameters they will then be applied
before the image is finally converted and compressed to the format defined in the
renderer. A typical image request therefore has the following parameters:

Parameter Description Default

Type Mandatory parameter specifying the
request type

-

Renderer Specifies the renderer to be used. Defined in
server
configuration

Source Mandatory, specifies the image
requested

-

Effects Optional effects to apply to the resulting
image

-

Quality Optional parameter used to define the
compression qualitywhen requesting a
jpg image

Defined in the
renderer

Depending on the image-renderer used there can be more mandatory or optional
parameters.

2.2.1 Default Image Renderer

The default image-renderer is used if no other image-renderer is specified in
the addressed renderer. The default image-renderer is the first choice inmost
scenarios like (3D-)product presentation or page rendering for FSI Pages. It
allows requesting complete images as well as image ranges, scaling the images
to the requested size. Depending on the configuration it will keep the source
images aspect ratio or distort the image to exactly fit the requested size. The
default image- renderer is configured by setting the following configuration
options in the imagerenderer section of the renderer definition.

Option Description Default

keepAspectRatio Defines if the original aspect ratio is
preserved or if the image(-region) will
be distorted to exactlymatchmatch
the requested size

true

maxWidth,
maxHeight

Defines the Maximum size of images
that can be requested through this

Height:
3000 pixel

2 Retrieving Data from the Server

NeptuneLabs - OpenAPI for FSI Server 3

2 Retrieving Data from the Server

4 NeptuneLabs - OpenAPI for FSI Server

Option Description Default

renderer Width: 3000
pixel

defaultWidth,
defaultHeight

Default image dimensions used when
none are given in the URL

Height: 300
pixel
Width: 300
pixel

The default image-renderer allows using the following additional parameters in
requests:

Parameter Description Default

width &height Both optional, these parameters
specify the size of the image requested.

Defined in
the profile.

left, top, right,
bottom

Optional parameters with values
ranging from 0 to 1. Used to request an
image region.

left=0,
top=0,
right=1,
bottom=1

rect Four comma-separated values ranging
from 0 to 1 which can be used instead
of left, to, right and bottom.

0,0,1,1

2.2.2 Double Page Image Renderer

The double page image- renderer composes two images to one image by
placing them next to each other. As the name suggests, this is primarily
designed for displaying two adjacent pages of a catalog or brochure. The first
client side FSI application to make use of this is FSI Pages mobile which uses
this image-renderer to display the catalog overviews. The Double Page Image
Renderer does currently not support image ranges, so using this renderer to
zoom into images using FSI Viewer is not possible.

The image-renderer configuration section in the renderer definition allows
setting the following parameters:

Option Description Default

maxWidth,
maxHeight

Defines the maximum size of images
that can be requested through this
renderer

Height:
3000 pixel
Width: 3000
pixel

defaultWidth,
defaultHeight

Defines the default dimensions to use, if
none are provided in the request.

Height: 300
pixel
Width: 300
pixel

backgroundColor Defines the background color, which is
visible as soon as one of the images has
transparent regions or if the two
images have different aspect ratios.

FFFFFF

defaultAlignment Defines how to align image on a page, if
they do not fill out the complete page.

CC

This image-renderer supports a number of query parameters, some
mandatory, others optional.

Query
Parameter Description Type Default

source Needs to provide two
comma separated image
urls. The first one for the
left and the second for
the right page.

mandatory -

width & height The requested image
dimensions.

optional see
defaultWidth
and
defaultHeight
options
above

leftalignment,
rightalignment

Defines how to align the
image on the left/right
page.

optional see default
Alignment
above

leftimagecrop, Defines a range to which optional 0, 0, 1, 1

2 Retrieving Data from the Server

NeptuneLabs - OpenAPI for FSI Server 5

2 Retrieving Data from the Server

6 NeptuneLabs - OpenAPI for FSI Server

Query
Parameter Description Type Default

rightimagecrop the image is cropped
before placing it on the
left/right page. (four
comma-separated
floating point values
specifying the top-left
corner and the width and
height)

leftinnergap,
rightinnergap

Defines an inner gap
between the center of
the resulting double-
page and the image
edges (floating point
value between 0 and 1
specifying the gap size in
relation to the image
size).

optional 0

2.2.3 Anaglyph Image Renderer

The Anaglyph Image-Renderer provides the basic functionality for using FSI
Server to generate stereoscopic 3D images. It composes an anaglyph image
from two given source images, allowing to specify the type of 3D glasses used
to view the image by providing the color filters for the left and right image. An
additional parameter allows applying effects to the image prior to performing
the necessary color and compose operations.

The image-renderer supports the following configuration parameters in the
renderer declaration:

Option Description Default

maxWidth,
maxHeight

Defines the maximum size of images
that can be requested through this
renderer

Height:
3000 pixel
Width: 3000
pixel

defaultWidth,
defaultHeight

Defines the default dimensions to use, if
none are provided in the request.

Height: 300
pixel

Option Description Default

Width: 300
pixel

The query parameters allow flexible use cases whilst only implying a minimum of
mandatory parameters. The basic parameters are the same as those used in
the default image-renderer.

Query
Parameter Description Type Default

source Defines the two source
images fromwhich the
resulting image is
composed.

mandatory -

width & height Width and height of the
resulting image.

optional see
default
values
above

top, left, bottom,
right

Parameters with values
ranging from 0 to 1. Used
to request an image
region.

optional top: 0,
left: 0,
bottom:
1, right:
1

rect Four comma-separated
values ranging from 0 to 1
which can be used instead
of left, top, right and
bottom image is cropped
before placing it on the
left/right page. (four
comma-separated floating
point values specifying the
top-left corner and the
width and height)

optional 0, 0, 1, 1

colormode Two comma separated
colors defining the color
filter for the left and right
image

optional red,cyan

2 Retrieving Data from the Server

NeptuneLabs - OpenAPI for FSI Server 7

2 Retrieving Data from the Server

8 NeptuneLabs - OpenAPI for FSI Server

Query
Parameter Description Type Default

preeffects Allows specifying image
effects that will be applied
to the source images
before composition. For
details on the effect
syntax, see Part II section
7 in the FSI Server manual

optional -

2.3 Template System

Info and List requests are also handled by specific renderers. This allows delivering
meta data that matches the images produced by the different image renderers. All
info- and list-renderers use a template system to actually render the gathered
meta data. By supplying custom templates the format of the resulting responses
can therefore be easily adapted to the needs of a client application. The template
system used is Freemarker. A full documentation of the freemarker language can
be found on the website at http://www.freemarker.org. The meta data provided in
the templates depends on the renderer and can be found in the tables in the
following sections. The template the renderer will use can be specified using the
template parameter in the request. Each template is made up of an attributes
section and the actual rendering information. The attributes section is evaluated at
the beginning of the rendering process and can therefore contain information the
renderer needs prior to the actual rendering.

The supported attributes are listed in the following table:

Attribute
Name Description Example / Possible

Values

datasources Defines a list of datasources used
in this template. For performance
reasons only the image meta data
specified here will be available
when rendering the template

'IPTC':'imagepool'
'EXIF':'imagepool'
'XMP':'imagepool'
or a comma-separated
list
containing anynumber
of the
above

headers Defines response headers
returned when processing HTTP

'Content-
Type':'application/json;

http://www.freemarker.org/

Attribute
Name Description Example / Possible

Values

requests charset=UTF-8'

2.4 Info Requests

Info requests are designed to deliver the meta data matching an image request. An
info request in general can provide access to all information available on a single or
multiple images, although specific renderers might only provide basic information.

A typical info request has at least the following parameters:

Parameter Description Example /
Possible Values

type Mandatory parameter specifying the
request type

-

renderer Specifies the renderer to be used. Defined in server
configuration

source Mandatory, specifies the image
requested.

-

template The template used to render the
response

Defined in server
configuration

The current version of FSI Server comes with one Info renderer only.

2.4.1 Default Info Renderer

The default info-renderer provides access to allmeta data available for a single
image. This includes file specific data like the last modified date and the file size,
as well as image specific data like the contents of IPTCand EXIF fields.

The following table includes all variables possibly available in the templates.

Parameter Description

info.src The file source path

2 Retrieving Data from the Server

NeptuneLabs - OpenAPI for FSI Server 9

2 Retrieving Data from the Server

10 NeptuneLabs - OpenAPI for FSI Server

Parameter Description

info.size The file size

info.width The image width

info.height The image height

info.lastmodified The files last modification time

info.alpha True if the image contained an alpha channel

info.importstatus The current import status:
0 - unknown 1 - imported
2 - queued 3 - error

info.iptc An array containing the IPTC information

info.exif An array containing the EXIF information

The templates for info requests delivered with FSI Server are located in
WEBINF/ internal/templates/info in the installation directory. These should not
be modified as they are used by the webinterface and the FSI Viewer with all its
add-ons. Custom templates can simply be placed in the folder WEB-INF/
templates/info. Their filename must end with the extension ".ftl".

As described in the previous chapter the define attribute in the templates
allows specifying template specific parameters used for rendering. The default
info renderer currently acknowledges only one value:

Define attribute Description Defaults

escape Defines the method used to escape
special characters. Possible values are:
NONE – No escaping. XML– Escapes
the XMLmarkup delimiters as well as
single and double quotationmarks.
JSON– Escapes the data for usage in
JSONobjects response

NONE

The following example shows one of the templates delivered with FSI Server
and has comments on all important statements describing their function. Using
this template results in an XML response containing basic file data and selected
iptc meta data.

<#ftl encoding="UTF-8" attributes={
'define':{

'Escape':'XML'#
}
}>

Template attribute
definitions

<?xml version="1.0" encoding="UTF-
8" ?>
<fsi:FSI xmlns:fsi="http://www.fsi-

viewer.com/schema">

Static code which comes out
unmodified.

<Image>
<Path value="${info.src}"/>
<#if info.width??><Width

value="${info.width}
"/></#if>
<#if info.height??><Height

value="${info.height}
"/></#if>
</Image>

Prints the image file path
and the width and height
of the image.

<#if info.iptc??> Checks if there is any IPTCdata
available.

<Options>
<#if info.iptc["FSI

SceneSets"]??>
<SceneSets>
${info.iptc["FSI SceneSets"]}
</SceneSets>
</#if>
<#if info.iptc["Caption"]??>
<iptc_caption>
${info.iptc["Caption"]}
</iptc_caption>
</#if>
</Options>
</#if>
</fsi:FSI>

Prints the contents of the
FSI SceneSets
and the Caption IPTCFields.

2 Retrieving Data from the Server

NeptuneLabs - OpenAPI for FSI Server 11

2 Retrieving Data from the Server

12 NeptuneLabs - OpenAPI for FSI Server

2.5 List Requests

List-renderers deliver lists of images and directories. They can be used to develop
client application that allow browsing through the directory structure as well as
applications that present a set of images like FSI Pages and FSI Showcase. As with
Info requests the output format can be adapted by providing custom templates.
The current version of FSI Server comes with one list renderer only.

2.5.1 Default List Renderer

The default list-renderer allows accessing directory meta data as well as basic
image meta data like image dimensions, file size and import status. Detailed
image meta data like the contents of IPTC and EXIF fields is not available for
performance reasons. The full list of variables available in the list templates
when using this renderer is shown in the following table:

Parameter Description

currentDir The path to the current directory

summary. entryCount The total number of entries in the list

summary. imagecount The number of images in the list

summary.
directoryCount

The number of directories

summary.
completeCount

summary. lastModified The last modified date of the requested directory

restrictions. readOnly True if the directory is read-only

restrictions.
writeEnabled

restrictions.
downloadOrigin

True if downloading the original image files from
this directory is permitted

ilist A list containing entries for the images and
subdirectories in the requested directory. Each
entry has a property type which is either
"directory" or "image". Depending on the type, the

Parameter Description

entries have more properties: Image entries have
the info properties described in XX (Default Info
Renderer), whereas directory entries have two
properties: hasSub,which is true if the directory
has further subdirectories and sub which contains
the number of subdirectories.

2.6 Search Requests

Search requests result in lists of images matching certain search queries. The
output is rendered using the list templates, so the output format can be modified by
providing custom templates and placing them in the WEB-INF/templates/list folder.
The search syntax is described in detail in section 3.5. in the FSI Server manual.

2 Retrieving Data from the Server

NeptuneLabs - OpenAPI for FSI Server 13

NeptuneLabs - OpenAPI for FSI Server 15

3 Modifying Data
The FSI Servers primary task is to provide quick access to images, image ranges and
image meta data,mainly for web usage. The available output formats for images are
therefore limited to what modern browsers can display. The output format for meta
data can be modified to match the developers needs byproviding templates.

3.1 Interface Overview

The API allows creating, deleting and renaming directories as well as uploading,
deleting, renaming and downloading files. Actions performed on directories are
always addressed using URLs of the form:

http://your.fsi-server.com/fsi/service/directory/path/to/directory

Actions perfomed on files are always addressed using the following syntax:

http://your.fsi-server.com/fsi/service/file/path/to/file

In addition to the two URLs above, login and logout requests are necessary to
create and destroy the session and keep alive requests can be sent to prevent
sessions from expiring. These requests need to be addressed at:

http://your.fsi-server.com/fsi/service/login
http://your.fsi-server.com/fsi/service/logout
and
http://your.fsi-server.com/fsi/service/sessionrefresh

All responses to requests will be XML or JSONdepending on the accept header sent
in the request. Commonly used responses are listed in section 3.7, including
examples of what they will look like in XML and JSON format as well a detailed
description of the response content.

3.2 Authentication

The authentication is handled by FSI Server itself to be independent of the
application server and allow a more flexible user management. In order to
authenticate itself a client application must be able to handle cookies. If it has
received a cookie from the server, this cookie must be sent with every following
request to the server.
Two requests are necessary to authenticate the client application. The first is a GET
request addressed at the Login URL:

http://your.fsi-server.com/fsi/service/login

3 Modifying Data

3 Modifying Data

16 NeptuneLabs - OpenAPI for FSI Server

This returns a JSON or an XML response. If the server is not ready to authenticate
users, the response will contain an error message describing the problem. If the
server is ready the response will describe how the password needs to be submitted
to the FSI Server as a value for loginmethod. By default the value will be hash,
stating that a password hash is submitted instead of the password itself. If FSI
Server is configured to autheticate against a Kerberos Server though, then the
password itself is required by the server. If the login method is stated to be hash,
then the response also contains a salt. The exact format of the response and the
possible values is described in → 3.9.2 SaltResponse . The client applicationmust
then use the salt to create a password hash using a SHA-256 algorithm of the form

hash = sha256(salt + sha256(password))

where the plus is the concatenation of two strings. The resulting hash or the plain
password is then posted to the Login URL as value of a variable called password
together with the login name as value of username. The response to this post
request will include a state which is either success of failed and a message including
details on the failure. In case of success the response will also contain the number
of seconds until the valid session will expire. This response is described in → 3.9.3
LoginResponse.
If an inactive client application wants to extend the session without performing any
actions it can send GET requests to

http://your.fsi-server.com/fsi/service/sessionrefresh

If the session is valid the response will contain the number of seconds until the
session will expire. See also → 3.9.4 SessionRefreshResponse
When the user logs out or when the client application has completed its tasks or
exits it should log out. This is done by sending a GET request to

http://your.fsi-server.com/fsi/service/logout

This destroys the session and returns an empty response.

3.3 Managing directories

Provided the logged in user has the appropriate permissions, directories can be
created, renamed or deleted using the API. All requests need to be directed at the
directories URI:

http://your.fsi-server.com/fsi/service/directory/path/to/directory

All requests will be responded to with XML or JSON responses, depending on the
accept-header sent.

3.3.1 Creating directories

To create a directory on the server the client application has to send a PUT
request to the directoryURI. This requires that at least the source connector
exists (in the example it would have to be called "path"). The response is an
ActionResponse (see Section → 3.9.1 Action Response) and will inform about
success or failure.

3.3.2 Deleting directories

Directories can the deleted by sending an HTTP DELETE request to the
directoryURI. The response to a delete request will also be an ActionResponse.
Sending a delete request will recursively delete the directory, including all
subdirectories and images. Deleted directories and images are deleted from
the servers internal storage and the source folder. FSI Server does not keep
backups, so deleted images can not be restored.

3.3.3 Renaming directories

Directories can be renamed by sending a POST request to the directory URI.
The POST request must contain a form parameter called to with the new
pathname of the directory as value. As renaming will affect all subdirectories
and included images, renaming directory containing lots of data will result in
massive restructuring of the internal storage. Renaming large directories
therefore might take a while. The POST request to rename directories will
return an ActionResponse.

3.3.4 Re-importing directories

Although it should not be necessary a client application can trigger the reimport
of all images in a directory. To schedule a directory for re- import a POST
request containing a form parameter named reimport with the value true
needs to be sent to the directory URI. Depending on the current number of
images in the import queue the re- import might not take place immediately. As
long as the re- import has not started the data from the original import is
accessible from the FSI Server. As most requests to modify data on the server,
this too will return an ActionResponse.

3 Modifying Data

NeptuneLabs - OpenAPI for FSI Server 17

3 Modifying Data

18 NeptuneLabs - OpenAPI for FSI Server

3.4 Managing files

The operations provided to manage files are similar to those provided for
directories. The API allows uploading, deleting, renaming and downloading files.
Manipulation of images directly on the server is not supported. FSI Server 2016
allows manipulating file metadata, as long as the file is used in FSI Servers context.
The manipulated metadata is not written to the source file. All operation requests
need to be addressed to the File URI:

http://your.fsi-server.com/fsi/service/file/path/to/file

3.4.1 Uploading files

Files can be uploaded by sending an HTTP PUT request to the file URI. The body
of the request should contain the file data or if the last modified date of the
image is relevant, an XML or JSON document wrapping the file. In the latter
case the XML root node should be called “file” and it should contain the nodes
“lastModified” (specifiying the date as a Unix timestamp) and “data” containing
the file data. A JSON representation should contain the two values as object
fields. To allow checking if a file can be uploaded prior to transmitting the file
data, the client application can send a POST request including the desired
location and filesize. This request must be addressed to:

http://your.fsi-server.com/fsi/service/postupload

The content type should be "application/x-www- form-urlencoded" and the
request should include the form parameters filesize, filename, dir and
lastmodified. The response will be an ActionResponse and will inform the Client
about anyproblems that might occur if an upload is attempted. Not all file type
can be uploaded to arbitrary locations. For storage and multiresolution source
connectors, only known image files are accepted. As the Adobe Flash browser
plug-in allows selectingmultiple files but cannot send PUT requests the API also
allows uploading files through POST requests. The POST request must be
directed at the file URI and the response to this request is also an
ActionResponse. The possible return values and status codes for the upload
and pre-upload requests can be found in the following table.

Code Description

2xx Ok resp. proceed with upload

310 File too large

Code Description

311 Unusable data uploaded

401 Not authorized (Session expired)

403 Forbidden (Access to directory denied)

404 Target directory does not exist

409 Invalid Image Path

413 Insufficient storage space

When uploading large files it can be helpful to keep track of the upload
progress. In order to allow this, the FSI Server API allows requesting the
current state of the upload by sending a GET request to:

http://your.fsi-server.com/fsi/service/uploadstatus/path/to/file

The response to this request will be an XML or JSON containing the number of
bytes alreadyuploaded as well as the total number of bytes expected.

3.4.2 Downloading files

If permitted by the source connector, the original files can be downloaded. A
GET request directed at the file URI will result in a download of the unmodified
source file if the request oes not contain an accept header preventing an
image/* type. If the requests only accepts application/xml or application/json,
then the response will contain an image message body containingmetadata as
described in → 3.9.8 Image Message.

3.4.3 Deleting files

Just like directories, files can be deleted by sending an HTTP DELETE request to
the file URI. If permitted, the file will be deleted from the source connector
directory as well as from the internal storage if appropriate. By default the
deleted files will be moved to the trash folder and are not deleted permanently.

3.4.4 Renaming / moving files

The renaming resp.moving is performed through an POST request directed at
the file URI. The request bodyneeds to contain a parameter named to with the

3 Modifying Data

NeptuneLabs - OpenAPI for FSI Server 19

3 Modifying Data

20 NeptuneLabs - OpenAPI for FSI Server

new path/filename combination as value. Again, the response to expect is an
ActionReponse. When moving files between different source connectors, the
move request might be rejected if the target source connector does not
support the specified file type.

3.4.5 Re-importing images

A re-import of an image can be triggered by sending a POST request to the file
URI with a parameter named reimport and a value of true. As documented in
section → 3.3.4 Re-importing directories the re-import must not necessarily
take place immediately but is instead appended to the end of the source
managers import queue.

3.5 Managing trash

FSI Server 2016 places all deleted files in a trash directory located within the
internal storages directory structure. Auser/client application can list the contents
of the trash he has access to, by sending a standard list request with _trash as a
value for the source parameter.
The response will contain an ID to reference the trash entry as well as a description
including the original files location. This ID can the be used to as a source for a move
request as described in → 3.4.4 Renaming /moving files.

3.6 Download and Batch Processing

In addition to downloading single files as described in section → 3.4.2 Downloading
files, FSI Server 2016 adds a feature to compose an archive of multiple source files
as well as multiple rendered images. All operations regarding the control of batch
processes are POST requests directed at:

http://your.fsi-server.com/fsi/service/jobqueue

The mandatory and optional form parameters are summarized in the following
table:

Parameter Decription Type Default

cmd the command to execute
createAndStart
cancel
restart

mandatory -

Parameter Decription Type Default

name the name of the new
archive. Applies to
createAndStart only

- -

archiveType the type of the new archive
(zip, tar.gz or tar.bz2).
Applies to createAndStart
only

- zip

file path and filename of the file
to add to the archive.
Multiple occurences
supported. Applies to
createAndStart only

mandatory for
createAndStart

-

renderingQuery if present the rendering
option will be applied to all
images before archiving.
Applies to createAndStart
only

optional -

scheduleDate a Unix timestampwhen to
start processing. Applies to
createAndStart only

optional -

id the id of the job to restart or
to cancel

mandatory for
cancel and restart

-

Once submitted a queued job and its id (for canceling and restarting) can be found
in the list of batch-jobs by sending a standard list request using _download as value
for the source parameter. The list will also contain the current status and, for
running processes, the current progress. Archives created by completed jobs can
be downloaded using a standard download request as described in section →
3.4.2 Downloading files.

3.7 Preferences

FSI Server allows setting global and user specific preferences for client applications
to use. These are simple key-value pairs and can be set by editing XML files on the
server or using the administration interface provided by FSI Administrator.More on

3 Modifying Data

NeptuneLabs - OpenAPI for FSI Server 21

3 Modifying Data

22 NeptuneLabs - OpenAPI for FSI Server

setting preferences can be found in the FSI Server manual. A client application can
access the preferences by sending a GET request to the following URL:

http://your.fsi-server.com/fsi/service/prefs

The result will be an XML or JSON representation of the preferences stored on the
server for the currently logged in user. Modifying the preferences by the client
application itself is not supported.

3.8 Changing the password

Changing the password requires more than a single request. For security reasons
the new password should not be transmitted in plain text and the old password is
required to allow client applications to include measures against captured sessions.
The password change consists of two requests, both directed at the password
resource URI: http://your.fsi-server.com/fsi/service/password. The first request is
a GET request to acquire a salt. Similar to the login procedure, this salt is used to
create a hash of the old password. This hash is then transferred together with an
SHA-256 hash of the new password wrapped in an XML message. This message
needs to be sent to the password URI using a put request. The exact format of the
requiredmessage can be seen in → 3.9.10 Password Message.

3.9 Messages used in Management Requests

On the serverside the request and response bodies are represented by Java
objects derived from classes containing JAXB annotations. This chapter discusses
the message types in detail and provides the XML Schema documents describing
the message content. Depending on the accept header sent by the client the
server will return either the XML or JSON representation of a message. The XML
format can be derived directly from the XSD provided. The JSON messages are
created by Jettison using the "mapped" notation.
If the client application is implemented using Java, developers do not need to spend
time on parsing message bodies. Instead the classes contained in the FSI Server
Development Pack can be used together with the JAX-RS Client API to easily
develop clients without the needs to manually implement the communications part.
An example Java codesnip can be found in Section → 3.10 Example Code and is also
part of the development pack. If the XML Schema definitions are needed to derive
implementations in other languages they can easily be created from the Java files in
the FSI Server Dev Pack using schemagen which is part of the current Java SE 6
versions.

3.9.1 Action Response

The Action Response is used to confirm a request has completed successfully or
to notify the client application of any errors that prevented the FSI Server from
completing the action.

XML Schema for the Action Response Message
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema version="1.0" xmlns:xs=

"http://www.w3.org/2001/XMLSchema">
<xs:element name="response"

type="actionResponse"/>
<xs:complexType name="actionResponse">
<xs:sequence>
<xs:element name="cause" type="xs:string"

minOccurs="0"/>
<xs:element name="details" type="xs:string"

minOccurs="0"/>
<xs:element name="statuscode" type="xs:int"/>
</xs:sequence>
</xs:complexType>
</xs:schema>

Depending on the request headers the Action Response can be formatted as
XMLor JSON. The following shows two example returnmessages.

Example Action Response in XML format
<?xml version="1.0" encoding="UTF-8 standalone="yes"?>
<response>
<statuscode>311</statuscode>
<cause>Unsupported filetype or broken image
</cause>
</response>

Example Action Response in JSON format
{
"statuscode":"311",
"cause":"Unsupported filetype or broken image"
}

3 Modifying Data

NeptuneLabs - OpenAPI for FSI Server 23

3 Modifying Data

24 NeptuneLabs - OpenAPI for FSI Server

3.9.2 SaltResponse

The SaltResponse is returned when addressing a GET request at the Login
URL. It contains the login method stating how the send the password and
optionally a salt, or a message why the server is not ready for users or client
applications to log in.

XML Schema for the Salt Response Message
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema
version="1.0"xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="saltResponse"

type="saltResponse"/>
<xs:complexType name="saltResponse">
<xs:sequence>
<xs:element name="state" type="xs:string"

minOccurs="0"/>
<xs:element name="salt" type="xs:string"

minOccurs="0"/>
<xs:element name="message" type="xs:string"

minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:schema>

3.9.3 LoginResponse

The Login Response will be sent as reply to a POST request directed at the login
URL. If the transmitted credentials were verified and the login succeeded the
response will contain a success state and the number of seconds before the
session will expire, if no further requests are received. If it fails a message
describing the reason for the failure will be included.

XML Schema for the Login Response Message
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema version="1.0 xmlns:xs=

"http://www.w3.org/2001/XMLSchema">
<xs:element name="loginresponse"

type="loginResponse"/>
<xs:complexType name="loginResponse">
<xs:sequence>
<xs:element name="state" type="xs:string"

minOccurs="0"/>
<xs:element name="messageCode" type="xs:int"/>
<xs:element name="message" type="xs:string"

minOccurs="0"/>
<xs:element name="expiry" type="xs:long"/>
</xs:sequence>
</xs:complexType>
</xs:schema>

3.9.4 SessionRefreshResponse

The SessionRefreshResponse is returned when addressing requests to the
session refresh URL described in → 3.2 Authentication. The response is made
up of a single value containing the number of seconds until the session expires.

XML Schema for the Session Refresh Response Message
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema version="1.0 xmlns:xs=

"http://www.w3.org/2001/XMLSchema">
<xs:element name="sessionrefreshresponse"

type="sessionRefreshResponse"/>
<xs:complexType name="sessionRefreshResponse">
<xs:sequence>
<xs:element name="expiry" type="xs:long"/>
</xs:sequence>

</xs:complexType>
</xs:schema>

3 Modifying Data

NeptuneLabs - OpenAPI for FSI Server 25

3 Modifying Data

26 NeptuneLabs - OpenAPI for FSI Server

3.9.5 PrefsResponse

The PrefsResponse is returned when requesting the users preferences (see →
3.7 Preferences). It contains a list of keys assigned to arrays of values.

XML Schema for the Prefs Response Message
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema version="1.0" xmlns:xs=

"http://www.w3.org/2001/XMLSchema">
<xs:element name="prefs" type="prefsResponse"/>
<xs:complexType name="prefsResponse">
<xs:sequence>
<xs:element name="pref" type="pref"

minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="pref">
<xs:sequence>
<xs:element name="value" type="xs:string"

minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="name" type="xs:string"/>
</xs:complexType>

</xs:schema>

3.9.6 UploadStatusResponse

The UploadStatusResponse is sent when requesting information on the
progress of currently running uploads as described in → 3.4.1 Uploading files.

XML Schema for the Upload Status Response Message
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema version="1.0" xmlns:xs=

"http://www.w3.org/2001/XMLSchema">
<xs:element name="UploadStatusResponse"

type="uploadStatusResponse"/>
<xs:complexType name="uploadStatusResponse">
<xs:sequence>
<xs:element name="uploaded" type="xs:long"/>
<xs:element name="total" type="xs:long"/>
</xs:sequence>
</xs:complexType>

</xs:schema>

3.9.7 BooleanResponse Message

This message type is only used to respond to logout requests. It will contain a
value of either true or false.

XML Schema for the Boolean Response Message
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema version="1.0" xmlns:xs=

"http://www.w3.org/2001/XMLSchema">
<xs:element name="booleanResponse"

type="booleanResponse"/>
<xs:complexType name="booleanResponse">
<xs:sequence>
<xs:element name="value" type="xs:boolean"/>
</xs:sequence>
</xs:complexType>

</xs:schema>

3.9.8 Image Message

This message type is used when sending PUT requests to file URIs in order to
upload files as described in → 3.4.1 Uploading files or as response message
body when sending GET requests with the appropriate accept header to file
URIs.When using this message type in conjunction with GET requests the data
part will be left empty, so that this kind of request can be considered as a
simplified info request. This is only implemented for completeness. Large scale

3 Modifying Data

NeptuneLabs - OpenAPI for FSI Server 27

3 Modifying Data

28 NeptuneLabs - OpenAPI for FSI Server

client applications should consider using info requests as described in → 2.4
Info Requests instead.

XML Schema for the Image Message
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema version="1.0" xmlns:xs=

"http://www.w3.org/2001/XMLSchema">
<xs:element name="image" type="image"/>
<xs:complexType name="image">
<xs:sequence>
<xs:element name="data" type="xs:base64Binary"

minOccurs="0"/>
<xs:element name="fileSize" type="xs:long"/>
<xs:element name="lastModified"

type="xs:long"/>
<xs:element name="targetPath" type="xs:string"

minOccurs="0"/>
</xs:sequence>

</xs:complexType>

3.9.9 Directory Message

Used in the message body to respond to GET requests directed at directory
URIs. These requests are comparable to the list requests described in section
→ 2.5 List Requests. but provide only file system based information.

XML Schema for the Directory Message
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema version="1.0" xmlns:xs=

"http://www.w3.org/2001/XMLSchema">
<xs:element name="dirEntry" type="dirEntry"/>
<xs:element name="directory" type="directory"/>
<xs:element name="imageEntry" type="imageEntry"/>
<xs:complexType name="imageEntry">
<xs:sequence/>
<xs:attribute name="name" type="xs:string"/>
<xs:attribute name="lastModified" type="xs:long"

use="required"/>
<xs:attribute name="size" type="xs:long"

use="required"/>
</xs:complexType>
<xs:complexType name="dirEntry">
<xs:sequence/>
<xs:attribute name="name" type="xs:string"/>
</xs:complexType>
<xs:complexType name="directory">
<xs:sequence>
<xs:element name="image" type="imageEntry"

minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="subdirectory" type="dirEntry"

minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:schema>

3.9.10 Password Message

This message format is used as a message body in the PUT requests sent to
the server in order to change the password. For details on how the complete
procedure of a password change looks like, please refer to chapter → 3.8
Changing the password.

3 Modifying Data

NeptuneLabs - OpenAPI for FSI Server 29

3 Modifying Data

30 NeptuneLabs - OpenAPI for FSI Server

XML Schema for the Password Message
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema version="1.0"xmlns:xs=

"http://www.w3.org/2001/XMLSchema">
<xs:element name="passwordchange"

type="password"/>
<xs:complexType name="password">
<xs:sequence>
<xs:element name="newpasswordhash"

type="xs:string" minOccurs="0"/>
<xs:element name="oldpasswordhash"

type="xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>

</xs:schema>

3.10 Example Code

The following Java codesnip shows how easy it is to develop a client application
using FSI Servers API. Only a few lines of code are necessary to log in, upload an
image and log out again. The example requires the FSI Server DevPack which can
be downloaded from http://www.fsi-viewer.com as well as the JerseyClient bundle
available at http://jersey.dev.java.net. The FSI Server Dev Pack contains a jar file
which includes the JAXB classes representing the request and response messages
as described in → 3.9 Messages used in Management Requests.

// initialize client
ApacheHttpClientConfig clientconfig =

new DefaultApacheHttpClientConfig();
clientconfig.getProperties().put(

ApacheHttpClientConfig.PROPERTY_HANDLE_
COOKIES,true);

Client c = ApacheHttpClient.create(clientconfig);

// send a GET request to obtain the salt
WebResource r =
c.resource
("http://your.fsi-server.com/fsi/service/login");

SaltResponse sr = r.get(SaltResponse.class);
String salt = sr.salt;

// combine password with salt and generate login hash
String passwordhash = randomHelper.sha256(password);
String loginhash = randomHelper.sha256(salt + passwordhash);

// send login request
Form form = new Form();
form.add("username", username);
form.add("password", loginhash);
LoginResponse lr = r.post(LoginResponse.class, form);
if (lr.state.equals("success")) {

// create object to upload
Image i = new Image();
File imagefile = new File(testfile);
byte[] filedata = ... // read from disk …
i.setData(filedata);
i.setFileSize(imagefile.length());
i.setLastModified(imagefile.lastModified());

// create resource to upload the image to
WebResource imageresource
= c.resource("http://your.fsi-server.com/"
+ "fsi/service/image/samples/image.tif");

// upload the image using a PUT request
ActionResponse ar =
imageresource.put(ActionResponse.class, i);

[… check status and handle errors …]

// logout
WebResource logoutresource
= c.resource("http://your.fsi-server.com"
+ "/fsi/service/logout");
logoutresource.get(BooleanResponse.class);

}

3 Modifying Data

NeptuneLabs - OpenAPI for FSI Server 31

NeptuneLabs - OpenAPI for FSI Server 33

Appendix

A Links to resources

http://www.fsi-viewer.com: Home of the FSI Viewer and FSI Server. The download
area requires free registration and provides the latest versions of all NeptuneLabs
FSI applications.

https://jersey.java.net: Jersey is the JAX-RS implementation used by FSI Server to
provide the part of the API that allows modifying data on the server.

http://jettison.codehaus.org: Java API used by Jersey to read and write JSON.

http://www.freemarker.org: The template engine used to render Info and List
requests.

B Changes in the OpenAPI

To make the transition from previous version of FSI Server to FSI Server 2016 as
easy as possible for third party applications, the changes in the OpenAPI were
reduced to the necessaryminimum.Most custom code should run without requiring
modifications. In detail, the changes where client code might be affected are as
follows:

The login process has been extended to support plain text password required for
server side Kerberos authentication. If your FSI Server does use Kerberos
authentication, the client application will have to be modified the bahve as stated in
section → 3.2 Authentication.

The designated service user and the status request for monitoring FSI Server have
been dropped in favour of a JMX interface. Detailed information on the JMX interface
is available in the FSI Server manual.

In addition to the above mentioned some parameter names have been
deprecated. They are still supported for compatibility reasons, but should be
changed in code generated after the FSI Server 2016 release date.

In the requests directed to the FSI Server for image or metadata retrieval the old
parameter profile is replaced by the new renderer.

Furthermore the parameter tpl has been replaced by template for readability.

Appendix

http://www.fsi-viewer.com/
https://jersey.java.net/
http://jettison.codehaus.org/
http://www.freemarker.org/

Appendix

34 NeptuneLabs - OpenAPI for FSI Server

As FSI Server 2016 supports all kind of digital assets and no longer only images, the
service requests to manage files on the server have changed from
.../service/image/... to .../service/file/...

Appendix
Changes in the OpenAPI 33
Links to resources 33

Authentication 15
Changing the password 22
Download and Batch Processing 20
Example Code 30
Image Requests 2

Anaglyph Image Renderer 6
Default Image Renderer 3
Double Page Image Renderer 4

Info Requests 9
Default Info Renderer 9

Interface Overview 15
Introduction 1
List Requests 12

Default List Renderer 12
Managing directories 16

Creating directories 17
Deleting directories 17
Re-importing directories 17
Renaming directories 17

Managing files 18
Deleting files 19
Downloading files 19
Re-importing images 20
Renaming /moving files 19
Uploading files 18

Managing trash 20
Messages used in Management

Requests 22
Action Response 23
BooleanResponse Message 27
DirectoryMessage 28
Image Message 27
LoginResponse 24
Password Message 29
PrefsResponse 26
SaltResponse 24
SessionRefreshResponse 25
UploadStatusResponse 26

Modifying Data 15
Preferences 21
Request Types 2
Retrieving Data from the Server 2

Search Requests 13
Template System 8

Index

Index

35 NeptuneLabs - OpenAPI for FSI Server

OpenAPI for FSI Server

NeptuneLabs GmbH
Lagesche Str. 32
32657 Lemgo
Germany

Fon: +49 5261-28732-0
Fax: +49 5261-28732-29
eMail: info@neptunelabs.com
http: www.neptunelabs.com

www.fsi-server.com

No part of this manual, including the software described in it,maybe reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into any language in any form or by any
means, except documentation kept by the purchaser for backup purposes,without the express
written permission ofNeptuneLabs.

Specifications and information contained in this manual are furnished for informational use
only and are subject to change at any time without notice, and should not be construed as a
commitment byNeptuneLabs. NeptuneLabs assumes no responsibility or liability for any errors or
inaccuracies in this manual, including the software described in it.

© 2009-2015 NeptuneLabs GmbH, Germany. All rights reserved.

www.fsi-viewer.com

NeptuneLabs GmbH
Lagesche Str. 32
32657 Lemgo
Germany
fon: + 49 5261 - 28732- 0
fax: + 49 5261 - 28732- 29
info@neptunelabs.com
www.neptunelabs.com

	1 Introduction
	2 Retrieving Data from the Server
	2.1 Request Types
	2.2 Image Requests
	2.2.1 Default Image Renderer
	2.2.2 Double Page Image Renderer
	2.2.3 Anaglyph Image Renderer

	2.3 Template System
	2.4 Info Requests
	2.4.1 Default Info Renderer

	2.5 List Requests
	2.5.1 Default List Renderer

	2.6 Search Requests

	3 Modifying Data
	3.1 Interface Overview
	3.2 Authentication
	3.3 Managing directories
	3.3.1 Creating directories
	3.3.2 Deleting directories
	3.3.3 Renaming directories
	3.3.4 Re-importing directories

	3.4 Managing files
	3.4.1 Uploading files
	3.4.2 Downloading files
	3.4.3 Deleting files
	3.4.4 Renaming / moving files
	3.4.5 Re-importing images

	3.5 Managing trash
	3.6 Download and Batch Processing
	3.7 Preferences
	3.8 Changing the password
	3.9 Messages used in Management Requests
	3.9.1 Action Response
	3.9.2 SaltResponse
	3.9.3 LoginResponse
	3.9.4 SessionRefreshResponse
	3.9.5 PrefsResponse
	3.9.6 UploadStatusResponse
	3.9.7 BooleanResponse Message
	3.9.8 Image Message
	3.9.9 Directory Message
	3.9.10 Password Message

	3.10 Example Code

	Appendix
	A Links to resources
	B Changes in the OpenAPI

	Index

